Introduction to Parallel Algorithms and Parallel Program Design

Parallel Computing
CIS 410/510
Department of Computer and Information Science
Methodological Design

- **Partition**
 - Task/data decomposition

- **Communication**
 - Task execution coordination

- **Agglomeration**
 - Evaluation of the structure

- **Mapping**
 - Resource assignment

I. Foster, “Designing and Building Parallel Programs,” Addison-Wesley, 1995. Book is online, see webpage.
Partitioning

- Partitioning stage is intended to expose opportunities for parallel execution
- Focus on defining large number of small task to yield a fine-grained decomposition of the problem
- A good partition divides into small pieces both the computational tasks associated with a problem and the data on which the tasks operates
- *Domain decomposition* focuses on computation data
- *Functional decomposition* focuses on computation tasks
- Mixing domain/functional decomposition is possible
Domain and Functional Decomposition

- Domain decomposition of 2D / 3D grid
- Functional decomposition of a climate model
Partitioning Checklist

- Does your partition define at least an order of magnitude more tasks than there are processors in your target computer? If not, may lose design flexibility.
- Does your partition avoid redundant computation and storage requirements? If not, may not be scalable.
- Are tasks of comparable size? If not, it may be hard to allocate each processor equal amounts of work.
- Does the number of tasks scale with problem size? If not may not be able to solve larger problems with more processors
- Have you identified several alternative partitions?
Communication (Interaction)

- Tasks generated by a partition must interact to allow the computation to proceed
 - Information flow: data and control

- Types of communication
 - *Local* vs. *Global*: locality of communication
 - *Structured* vs. *Unstructured*: communication patterns
 - *Static* vs. *Dynamic*: determined by runtime conditions
 - *Synchronous* vs. *Asynchronous*: coordination degree

- Granularity and frequency of communication
 - Size of data exchange

- Think of communication as interaction and control
 - Applicable to both shared and distributed memory parallelism
Types of Communication

- Point-to-point
- Group-based
- Hierarchical
- Collective
Communication Design Checklist

- Is the distribution of communications equal?
 - Unbalanced communication may limit scalability

- What is the communication locality?
 - Wider communication locales are more expensive

- What is the degree of communication concurrency?
 - Communication operations may be parallelized

- Is computation associated with different tasks able to proceed concurrently? Can communication be overlapped with computation?
 - Try to reorder computation and communication to expose opportunities for parallelism
Agglomeration

- Move from parallel abstractions to real implementation
- Revisit partitioning and communication
 - View to efficient algorithm execution
- Is it useful to **agglomerate**?
 - What happens when tasks are combined?
- Is it useful to **replicate** data and/or computation?
- Changes important algorithm and performance ratios
 - *Surface-to-volume*: reduction in communication at the expense of decreasing parallelism
 - *Communication/computation*: which cost dominates
- Replication may allow reduction in communication
- Maintain flexibility to allow overlap
Types of Agglomeration

- Element to column

- Element to block
 - Better surface to volume

- Task merging

- Task reduction
 - Reduces communication
Agglomeration Design Checklist

- Has increased locality reduced communication costs?
- Is replicated computation worth it?
- Does data replication compromise scalability?
- Is the computation still balanced?
- Is scalability in problem size still possible?
- Is there still sufficient concurrency?
- Is there room for more agglomeration?
- Fine-grained vs. coarse-grained?
Mapping

- Specify where each task is to execute
 - Less of a concern on shared-memory systems

- Attempt to minimize execution time
 - Place concurrent tasks on different processors to enhance physical concurrency
 - Place communicating tasks on same processor, or on processors close to each other, to increase locality
 - Strategies can conflict!

- Mapping problem is \textit{NP-complete}
 - Use problem classifications and heuristics

- Static and dynamic load balancing
Mapping Algorithms

- Load balancing (partitioning) algorithms
- Data-based algorithms
 - Think of computational load with respect to amount of data being operated on
 - Assign data (i.e., work) in some known manner to balance
 - Take into account data interactions
- Task-based (task scheduling) algorithms
 - Used when functional decomposition yields many tasks with weak locality requirements
 - Use task assignment to keep processors busy computing
 - Consider centralized and decentralize schemes
Mapping Design Checklist

- Is static mapping too restrictive and non-responsive?
- Is dynamic mapping too costly in overhead?
- Does centralized scheduling lead to bottlenecks?
- Do dynamic load-balancing schemes require too much coordination to re-balance the load?
- What is the tradeoff of dynamic scheduling complexity versus performance improvement?
- Are there enough tasks to achieve high levels of concurrency? If not, processors may idle.
Types of Parallel Programs

- Flavors of parallelism
 - Data parallelism
 - all processors do same thing on different data
 - Task parallelism
 - processors are assigned tasks that do different things

- Parallel execution models
 - Data parallel
 - Pipelining (Producer-Consumer)
 - Task graph
 - Work pool
 - Master-Worker
Data Parallel

- Data is decomposed (mapped) onto processors
- Processors performance similar (identical) tasks on data
- Tasks are applied concurrently
- Load balance is obtained through data partitioning
 - Equal amounts of work assigned
- Certainly may have interactions between processors
- Data parallelism scalability
 - Degree of parallelism tends to increase with problem size
 - Makes data parallel algorithms more efficient
- Single Program Multiple Data (SPMD)
 - Convenient way to implement data parallel computation
 - More associated with distributed memory parallel execution
Matrix - Vector Multiplication

- $A \times b = y$
- Allocate tasks to rows of A
 $$y[i] = \sum_{j} A[i,j]*b[j]$$
- Dependencies?
- Speedup?
- Computing each element of y can be done independently
Matrix-Vector Multiplication (Limited Tasks)

- Suppose we only have 4 tasks
- Dependencies?
- Speedup?

![Diagram showing matrix-vector multiplication with 4 tasks and their dependencies]
Matrix Multiplication

- \(A \times B = C \)
- \(A[i,:] \cdot B[:,j] = C[i,j] \)

- Row partitioning
 - \(N \) tasks

- Block partitioning
 - \(N \times N/B \) tasks

- Shading shows data sharing in B matrix
Granularity of Task and Data Decompositions

- Granularity can be with respect to tasks and data
- Task granularity
 - Equivalent to choosing the number of tasks
 - Fine-grained decomposition results in large # tasks
 - Large-grained decomposition has smaller # tasks
 - Translates to data granularity after # tasks chosen
 - consider matrix multiplication
- Data granularity
 - Think of in terms of amount of data needed in operation
 - Relative to data as a whole
 - Decomposition decisions based on input, output, input-output, or intermediate data
Mesh Allocation to Processors

- Mesh model of Lake Superior
- How to assign mesh elements to processors

- Distribute onto 8 processors randomly
- Graph partitioning for minimum edge cut
Pipeline Model

- Stream of data operated on by succession of tasks
 - Task 1 Task 2 Task 3 Task 4
 - Tasks are assigned to processors
- Consider N data units
- Sequential
- Parallel (each task assigned to a processor)
 - 4-way parallel, but for longer time

```
4-way parallel
```

```
4-way parallel
```

```
4-way parallel
```

```
Pipeline Performance

- $N$ data and $T$ tasks
- Each task takes unit time $t$
- Sequential time = $N \times T \times t$
- Parallel pipeline time = $\text{start} + \text{finish} + \frac{(N - 2T)}{T} \times t$
  = $O\left(\frac{N}{T}\right)$ (for $N \gg T$)
- Try to find a lot of data to pipeline
- Try to divide computation in a lot of pipeline tasks
  - More tasks to do (longer pipelines)
  - Shorter tasks to do
- Pipeline computation is a special form of producer-consumer parallelism
  - Producer tasks output data input by consumer tasks
**Tasks Graphs**

- Computations in any parallel algorithms can be viewed as a task dependency graph.
- Task dependency graphs can be non-trivial:
  - Pipeline
  - Arbitrary (represents the algorithm dependencies)

```
Task 1 → Task 2 → Task 3 → Task 4
```

Numbers are time taken to perform task.
Task Graph Performance

- Determined by the *critical path (span)*
  - Sequence of dependent tasks that takes the longest time

![Diagram](a)
- Min time = 27

![Diagram](b)
- Min time = 34

- *Critical path length* bounds parallel execution time
Task Assignment (Mapping) to Processors

- Given a set of tasks and number of processors
- How to assign tasks to processors?
- Should take dependencies into account
- Task mapping will determine execution time

(a)
Total time = ?

(b)
Total time = ?
Task Graphs in Action

- Uintah task graph scheduler
  - C-SAFE: Center for Simulation of Accidental Fires and Explosions, University of Utah
  - Large granularity tasks

- PLASMA
  - DAG-based parallel linear algebra
  - DAGuE: A generic distributed DAG engine for HPC

DAG of QR for a $4 \times 4$ tiles matrix on a $2 \times 2$ grid of processors.
Bag o’ Tasks Model and Worker Pool

- Set of tasks to be performed
- How do we schedule them?
  - Find independent tasks
  - Assign tasks to available processors
- Bag o’ Tasks approach
  - Tasks are stored in a bag waiting to run
  - If all dependencies are satisfied, it is moved to a ready to run queue
  - Scheduler assigns a task to a free processor
- Dynamic approach that is effective for load balancing
Master-Worker Parallelism

- One or more master processes generate work
- Masters allocate work to worker processes
- Workers idle if have nothing to do
- Workers are mostly stupid and must be told what to do
  - Execute independently
  - May need to synchronize, but must be told to do so
- Master may become the bottleneck if not careful
- What are the performance factors and expected performance behavior
  - Consider task granularity and asynchrony
  - How do they interact?
M-W Execution Trace (Li Li)
Search-Based (Exploratory) Decomposition

- 15-puzzle problem
- 15 tiles numbered 1 through 15 placed in 4x4 grid
  - Blank tile located somewhere in grid
  - Initial configuration is out of order
  - Find shortest sequence of moves to put in order

- Sequential search across space of solutions
  - May involve some heuristics
Parallelizing the 15-Puzzle Problem

- Enumerate move choices at each stage
- Assign to processors
- May do pruning
- Wasted work
Divide-and-Conquer Parallelism

- Break problem up in orderly manner into smaller, more manageable chunks and solve
- Quicksort example
Dense Matrix Algorithms

- Great deal of activity in algorithms and software for solving linear algebra problems
  - Solution of linear systems ($Ax = b$)
  - Least-squares solution of over- or under-determined systems ($\min ||Ax-b||$)
  - Computation of eigenvalues and eigenvectors ($Ax=\lambda x$)
  - Driven by numerical problem solving in scientific computation

- Solutions involves various forms of matrix computations

- Focus on high-performance matrix algorithms
  - Key insight is to maximize computation to communication
Solving a System of Linear Equations

- $A\mathbf{x}=\mathbf{b}$

  
  \[
  a_{0,0}x_0 + a_{0,1}x_1 + \ldots + a_{0,n-1}x_{n-1} = b_0 \\
  a_{1,0}x_0 + a_{1,1}x_1 + \ldots + a_{1,n-1}x_{n-1} = b_1 \\
  \vdots \\
  a_{n-1,0}x_0 + a_{n-1,1}x_1 + \ldots + a_{n-1,n-1}x_{n-1} = b_{n-1}
  \]

- Gaussian elimination (classic algorithm)
  
  - Forward elimination to $U\mathbf{x}=\mathbf{y}$ ($U$ is upper triangular)
    - without or with partial pivoting
  - Back substitution to solve for $\mathbf{x}$
  - Parallel algorithms based on partitioning of $A$
**Sequential Gaussian Elimination**

1. procedure GAUSSIAN ELIMINATION \((A, b, y)\)
2. begin
3. for \(k := 0\) to \(n - 1\) do /* Outer loop */
4. begin
5. for \(j := k + 1\) to \(n - 1\) do
6. \(A[k, j] := A[k, j]/A[k, k]; /* Division step */\)
7. \(y[k] := b[k]/A[k, k];\)
8. \(A[k, k] := 1;\)
9. for \(i := k + 1\) to \(n - 1\) do
10. begin
11. for \(j := k + 1\) to \(n - 1\) do
13. \(b[i] := b[i] - A[i, k] \times y[k];\)
14. \(A[i, k] := 0;\)
15. endfor; /*Line9*/
16. endfor; /*Line3*/
17. end GAUSSIAN ELIMINATION
Computation Step in Gaussian Elimination

5x + 3y = 22
8x + 2y = 13

\[ x = \frac{22 - 3y}{5} \]
\[ 8(22 - 3y)/5 + 2y = 13 \]
\[ y = \frac{13 - 176/5}{(24/5 + 2)} \]
Rowwise Partitioning on Eight Processes

(a) Computation:

(i) \( A[k,j] := A[k,j]/A[k,k] \) for \( k < j < n \)

(ii) \( A[k,k] := 1 \)

(b) Communication:

One-to-all broadcast of row \( A[k,*] \)
### Rowwise Partitioning on Eight Processes

<table>
<thead>
<tr>
<th>( P_0 )</th>
<th>1</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>( P_1 )</td>
<td>0</td>
<td>1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>( P_2 )</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>( P_3 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>( P_4 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>( P_5 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.3</td>
<td>5.4</td>
<td>5.5</td>
<td>5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>( P_6 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.3</td>
<td>6.4</td>
<td>6.5</td>
<td>6.6</td>
<td>6.7</td>
</tr>
<tr>
<td>( P_7 )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.3</td>
<td>7.4</td>
<td>7.5</td>
<td>7.6</td>
<td>7.7</td>
</tr>
</tbody>
</table>

#### (c) Computation:

for \( k < i < n \) and \( k < j < n \)

(ii) \( A[i,k] := 0 \) for \( k < i < n \)
### 2D Mesh Partitioning on 64 Processes

(a) Rowwise broadcast of $A[i,k]$ for $(k - 1) < i < n$

<table>
<thead>
<tr>
<th>1</th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
<td>(3,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
<td>(5,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
<td>(6,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(7,3)</td>
<td>(7,4)</td>
<td>(7,5)</td>
<td>(7,6)</td>
<td>(7,7)</td>
</tr>
</tbody>
</table>

(b) $A[k,j] := A[k,j] / A[k,k]$ for $k < j < n$

<table>
<thead>
<tr>
<th>1</th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
<td>(3,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
<td>(5,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
<td>(6,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(7,3)</td>
<td>(7,4)</td>
<td>(7,5)</td>
<td>(7,6)</td>
<td>(7,7)</td>
</tr>
</tbody>
</table>

(c) Columnwise broadcast of $A[k,j]$ for $k < j < n$

<table>
<thead>
<tr>
<th>1</th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
<td>(3,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
<td>(5,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
<td>(6,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(7,3)</td>
<td>(7,4)</td>
<td>(7,5)</td>
<td>(7,6)</td>
<td>(7,7)</td>
</tr>
</tbody>
</table>

Back Substitution to Find Solution

1. procedure BACK SUBSTITUTION \((U, x, y)\)
2. begin
3. for \(k := n - 1 \) downto 0 do /* Main loop */
4. begin
5. \(x[k] := y[k];\)
6. for \(i := k - 1 \) downto 0 do
7. \(y[i] := y[i] - x[k] xU[i, k];\)
8. endfor;
9. end BACK SUBSTITUTION
Dense Linear Algebra (www.netlib.gov)

- Basic Linear Algebra Subroutines (BLAS)
  - Level 1 (vector-vector): vectorization
  - Level 2 (matrix-vector): vectorization, parallelization
  - Level 3 (matrix-matrix): parallelization

- LINPACK (Fortran)
  - Linear equations and linear least-squares

- EISPACK (Fortran)
  - Eigenvalues and eigenvectors for matrix classes

- LAPACK (Fortran, C) (LINPACK + EISPACK)
  - Use BLAS internally

- ScaLAPACK (Fortran, C, MPI) (scalable LAPACK)
Numerical Libraries

- **PETSc**
  - Data structures / routines for partial differential equations
  - MPI based

- **SuperLU**
  - Large sparse nonsymmetric linear systems

- **Hypre**
  - Large sparse linear systems

- **TAO**
  - Toolkit for Advanced Optimization

- **DOE ACTS**
  - Advanced CompuTational Software
Sorting Algorithms

- Task of arranging unordered collection into order
- Permutation of a sequence of elements
- Internal versus external sorting
  - External sorting uses auxiliary storage
- Comparison-based
  - Compare pairs of elements and exchange
  - $O(n \log n)$
- Noncomparison-based
  - Use known properties of elements
  - $O(n)$
Sorting on Parallel Computers

- Where are the elements stored?
  - Need to be distributed across processes
  - Sorted order will be with respect to process order

- How are comparisons performed?
  - One element per process
    - compare-exchange
    - Interprocess communication will dominate execution time
  - More than one element per process
    - compare-split

- Sorting networks
  - Based on comparison network model

- Contrast with shared memory sorting algorithms
Single vs. Multi Element Comparison

- One element per processor

- Multiple elements per processor
**Sorting Networks**

- Networks to sort $n$ elements in less than $O(n \log n)$
- Key component in network is a comparator
  - Increasing or decreasing comparator

- Comparators connected in parallel and permute elements
Sorting Network Design

- Multiple comparator stages (# stages, # comparators)
- Connected together by interconnection network
- Output of last stage is the sorted list
- $O(\log_2 n)$ sorting time
- Convert any sorting network to sequential algorithm
Bitonic Sort

- Create a *bitonic sequence* then sort the sequence
- Bitonic sequence
  - sequence of elements \(<a_0, a_1, \ldots, a_{n-1}>\)
  - \(<a_0, a_1, \ldots, a_i>\) is monotonically increasing
  - \(<a_i, a_{i+1}, \ldots, a_{n-1} >\) is monotonically decreasing
- Sorting using *bitonic splits* is called *bitonic merge*
- *Bitonic merge network* is a network of comparators
  - Implement bitonic merge
- Bitonic sequence is formed from unordered sequence
  - Bitonic sort creates a bitonic sequence
  - Start with sequence of size two (default bitonic)
**Bitonic Sort Network**

Unordered sequence

Bitonic sequence

- Increase
- Decrease

![Diagram of Bitonic Sort Network](image-url)
**Bitonic Merge Network**

Bitonic sequence

<table>
<thead>
<tr>
<th>Wires</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>0</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>0010</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>20</td>
<td>0</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>95</td>
<td>95</td>
<td>35</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>90</td>
<td>23</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>60</td>
<td>18</td>
<td>35</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>40</td>
<td>20</td>
<td>23</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>35</td>
<td>95</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>23</td>
<td>90</td>
<td>40</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>18</td>
<td>60</td>
<td>95</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>0</td>
<td>40</td>
<td>90</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sorted sequence
Parallel Bitonic Sort on a Hypercube

1. procedure BITONIC SORT(label, d)
2. begin
3. for i := 0 to d - 1 do
4. for j := i downto 0 do
5. if (i + 1)st bit of label = j th bit of label then
6. comp exchange max(j);
7. else
8. comp exchange min(j);
9. end BITONIC SORT
Parallel Bitonic Sort on a Hypercube

Step 1

Step 2

Last stage

Step 3

Step 4
Bubble Sort and Variants

- Can easily parallelize sorting algorithms of $O(n^2)$
- **Bubble sort** compares and exchanges adjacent elements
  - $O(n)$ each pass
  - $O(n)$ passes
  - Available parallelism?
- **Odd-even transposition sort**
  - Compares and exchanges odd and even pairs
  - After $n$ phases, elements are sorted
  - Available parallelism?
Odd-Even Transposition Sort

Unsorted

3  2  3  8  5  6  4  1  
   ||   ||   ||   ||   
2  3  3  8  5  6  1  4  
   ||   ||   ||   ||   
2  3  3  5  8  1  6  4  
   ||   ||   ||   ||   
2  3  3  5  1  8  4  6  
   ||   ||   ||   ||   
2  3  3  1  5  4  8  6  
   ||   ||   ||   ||   
2  3  1  3  4  5  6  8  
   ||   ||   ||   ||   
2  1  3  3  4  5  6  8  
   ||   ||   ||   ||   
1  2  3  3  4  5  6  8  
   ||   ||   ||   ||   
1  2  3  3  4  5  6  8  
   ||   ||   ||   ||   

Sorted
Parallel Odd-Even Transposition Sort

1. procedure ODD-EVEN PAR(n)
2. begin
3. \( id := \) process' s label
4. for \( i := 1 \) to \( n \) do
5. begin
6. if \( i \) is odd then
7. if \( id \) is odd then
8. compare-exchange \( \min(id + 1) \);
9. else
10. compare-exchange \( \max(id - 1) \);
11. if \( i \) is even then
12. if \( id \) is even then
13. compare-exchange \( \min(id + 1) \);
14. else
15. compare-exchange \( \max(id - 1) \);
16. end for
17. end ODD-EVEN PAR
QuickSort

- QuickSort has average complexity of $O(n \log n)$
- Divide-and-conquer algorithm
  - Divide into subsequences where every element in first is less than or equal to every element in the second
  - Pivot is used to split the sequence
  - Conquer step recursively applies quicksort algorithm
- Available parallelism?
Sequential Quicksort

1. procedure QUICKSORT (A, q, r )
2. begin
3. if q < r then
4. begin
5. x := A[q];
6. s := q;
7. for i := q + 1 to r do
8. if A[i] ≤ x then
9. begin
10. s := s + 1;
11. swap(A[s], A[i ]);
12. end if
13. swap(A[q], A[s]);
14. QUICKSORT (A, q, s);
15. QUICKSORT (A, s + 1, r );
16. end if
17. end QUICKSORT
Parallel Shared Address Space Quicksort

First Step

<table>
<thead>
<tr>
<th>$P_0$</th>
<th>$P_1$</th>
<th>$P_2$</th>
<th>$P_3$</th>
<th>$P_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>13</td>
<td>18</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>6</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>16</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

pivot = 7

<table>
<thead>
<tr>
<th>$P_0$</th>
<th>$P_1$</th>
<th>$P_2$</th>
<th>$P_3$</th>
<th>$P_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>18</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>20</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

after local rearrangement

<table>
<thead>
<tr>
<th>$P_0$</th>
<th>$P_1$</th>
<th>$P_2$</th>
<th>$P_3$</th>
<th>$P_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>18</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

after global rearrangement

Second Step

<table>
<thead>
<tr>
<th>$P_0$</th>
<th>$P_1$</th>
<th>$P_2$</th>
<th>$P_3$</th>
<th>$P_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>18</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

pivot = 5

<table>
<thead>
<tr>
<th>$P_0$</th>
<th>$P_1$</th>
<th>$P_2$</th>
<th>$P_3$</th>
<th>$P_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>18</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

pivot = 17

<table>
<thead>
<tr>
<th>$P_0$</th>
<th>$P_1$</th>
<th>$P_2$</th>
<th>$P_3$</th>
<th>$P_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>14</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

after local rearrangement

<table>
<thead>
<tr>
<th>$P_0$</th>
<th>$P_1$</th>
<th>$P_2$</th>
<th>$P_3$</th>
<th>$P_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>14</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>9</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>18</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

after global rearrangement
Parallel Shared Address Space Quicksort

Third Step

Pivot selection

after local rearrangement

after global rearrangement

Fourth Step

after local rearrangement

Solution
Bucket Sort and Sample Sort

- **Bucket sort** is popular when elements (values) are uniformly distributed over an interval
  - Create $m$ buckets and place elements in appropriate bucket
  - $O(n \log(n/m))$
  - If $m=n$, can use value as index to achieve $O(n)$ time

- **Sample sort** is used when uniformly distributed assumption is not true
  - Distributed to $m$ buckets and sort each with quicksort
  - Draw sample of size $s$
  - Sort samples and choose $m-1$ elements to be *splitters*
  - Split into $m$ buckets and proceed with bucket sort
Parallel Sample Sort

Initial element distribution

Local sort & sample selection

Sample combining

Global splitter selection

Final element assignment
Graph Algorithms

- Graph theory important in computer science
- Many complex problems are graph problems

- \( G = (V, E) \)
  - \( V \) finite set of points
  - \( E \) finite set of edges
  - \( e \in E \) is an pair \((u,v)\), where \( u, v \in V \)
  - Unordered and ordered graphs
Graph Terminology

- Vertex adjacency if \((u,v)\) is an edge
- Path from \(u\) to \(v\) if there is an edge sequence starting at \(u\) and ending at \(v\)
- If there exists a path, \(v\) is reachable from \(u\)
- A graph is connected if all pairs of vertices are connected by a path
- A weighted graph associates weights with each edge
- Adjacency matrix is an \(n \times n\) array \(A\) such that
  - \(A_{i,j} = 1\) if \((v_i, v_j) \in E\); 0 otherwise
  - Can be modified for weighted graphs (\(\infty\) is no edge)
  - Can represent as adjacency lists
Graph Representations

- Adjacency matrix

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

- Adjacency list
Minimum Spanning Tree

- A spanning tree of an undirected graph $G$ is a subgraph of $G$ that is a tree containing all the vertices of $G$.

- The minimum spanning tree (MST) for a weighted undirected graph is a spanning tree with minimum weight.

- Prim’s algorithm can be used:
  - Greedy algorithm
  - Selects an arbitrary starting vertex
  - Chooses new vertex guaranteed to be in MST
  - $O(n^2)$
  - Prim’s algorithm is iterative
Prim’s Minimum Spanning Tree Algorithm

1. procedure PRIM MST\((V, E, w, r)\)
2. begin
3. \(VT := \{r\}\);
4. \(d[r] := 0\);
5. for all \(v \in (V - VT)\) do
6. \(\text{if edge \((r, v)\) exists set } d[v] := w(r, v);\)
7. \(\text{else set } d[v] := \infty;\)
8. while \(VT \neq V\) do
9. begin
10. find a vertex \(u\) such that \(d[u] := \min\{d[v]|v \in (V - VT)\}\);
11. \(VT := VT \cup \{u\}\);
12. for all \(v \in (V - VT)\) do
13. \(d[v] := \min\{d[v], w(u, v)\};\)
14. endwhile
15. end PRIM MST
Example: Prim’s MST Algorithm

(a) Original graph

(b) After the first edge has been selected
Example: Prim’s MST Algorithm

(c) After the second edge has been selected

(d) Final minimum spanning tree

\[
\begin{array}{ccccccc}
& a & b & c & d & e & f \\
\hline
a & 0 & 1 & 3 & \infty & \infty & 3 \\
b & 1 & 0 & 5 & 1 & \infty & \infty \\
c & 3 & 5 & 0 & 2 & 1 & \infty \\
d & \infty & 1 & 2 & 0 & 4 & \infty \\
e & \infty & \infty & 1 & 4 & 0 & 5 \\
f & 2 & \infty & \infty & \infty & 5 & 0 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
& a & b & c & d & e & f \\
\hline
a & 1 & 0 & 2 & 1 & 1 & 3 \\
b & 1 & 0 & 5 & 1 & \infty & \infty \\
c & 3 & 5 & 0 & 2 & 1 & \infty \\
d & \infty & 1 & 2 & 0 & 4 & \infty \\
e & \infty & \infty & 1 & 4 & 0 & 5 \\
f & 2 & \infty & \infty & \infty & 5 & 0 \\
\end{array}
\]
Parallel Formulation of Prim’s Algorithm

- Difficult to perform different iterations of the `while` loop in parallel because $d[v]$ may change each time.
- Can parallelize each iteration though.
- Partition vertices into $p$ subsets $V_i$, $i=0,\ldots,p-1$.
- Each process $P_i$ computes
  
  $d_i[u] = \min\{d_i[v] \mid v \in (V-V_T) \cap V_i\}$

- Global minimum is obtained using all-to-one reduction.
- New vertex is added to $V_T$ and broadcast to all processes.
- New values of $d[v]$ are computed for local vertex.
- $O(n^2/p) + O(n \log p)$ (computation + communication)
Partitioning in Prim’s Algorithm

(a) $d[1..n]$ partitioned into $\frac{n}{p}$ segments.

(b) Processing $n$ elements on $p$ processors.
Single-Source Shortest Paths

- Find shortest path from a vertex \( v \) to all other vertices
- The shortest path in a weighted graph is the edge with the minimum weight
- Weights may represent time, cost, loss, or any other quantity that accumulates additively along a path
- Dijkstra’s algorithm finds shortest paths from vertex \( s \)
  - Similar to Prim’s MST algorithm
    - MST with vertex \( v \) as starting vertex
  - Incrementally finds shortest paths in greedy manner
  - Keep track of minimum cost to reach a vertex from \( s \)
  - \( O(n^2) \)
Dijkstra’s Single-Source Shortest Path

1. procedure DIJKSTRA SINGLE SOURCE SP(V, E, w, s)
2. begin
3. $V_T := \{s\}$;
4. for all $v \in (V - V_T)$ do
5. if $(s, v)$ exists set $l[v] := w(s, v)$;
6. else set $l[v] := \infty$;
7. while $V_T \neq V$ do
8. begin
9. find a vertex $u$ such that $l[u] := \min\{l[v] | v \in (V - V_T)\}$;
10. $VT := V_T \cup \{u\}$;
11. for all $v \in (V - V_T)$ do
12. $l[v] := \min\{l[v], l[u] + w(u, v)\}$;
13. endwhile
14. end DIJKSTRA SINGLE SOURCE SP
Parallel Formulation of Dijkstra’s Algorithm

- Very similar to Prim’s MST parallel formulation
- Use 1D block mapping as before
- All processes perform computation and communication similar to that performed in Prim’s algorithm
- Parallel performance is the same
  - \( O(n^2/p) + O(n \log p) \)
  - Scalability
    - \( O(n^2) \) is the sequential time
    - \( O(n^2) / [O(n^2/p) + O(n \log p)] \)
All Pairs Shortest Path

- Find the shortest path between all pairs of vertices
- Outcome is a $n \times n$ matrix $D = \{d_{i,j}\}$ such that $d_{i,j}$ is the cost of the shortest path from vertex $v_i$ to vertex $v_j$

Dijsktra’s algorithm
- Execute single-source algorithm on each process
- $O(n^3)$
- Source-partitioned formulation (use sequential algorithm)
- Source-parallel formulation (use parallel algorithm)

Floyd’s algorithm
- Builds up distance matrix from the bottom up
Floyd’s All-Pairs Shortest Paths Algorithm

1. **procedure** FLOYD ALL PAIRS SP(A)
2. **begin**
3. \[ D^{(0)} = A; \]
4. **for** \( k := 1 \) **to** \( n \) **do**
5. **for** \( i := 1 \) **to** \( n \) **do**
6. **for** \( j := 1 \) **to** \( n \) **do**
7. \[ d^{(k)}_{i,j} := \min \{ d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j} \}; \]
8. **end** FLOYD ALL PAIRS SP
Parallel Floyd’s Algorithm

1. procedure FLOYD ALL PAIRS PARALLEL (A)
2. begin
3. $D^{(0)} = A$;
4. for $k := 1$ to $n$ do
5. for all $P_{i,j}$, where $i, j \leq n$, do in parallel
6. $d^{(k)}_{i,j} := \min d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}$;
7. end FLOYD ALL PAIRS PARALLEL
Parallel Graph Algorithm Library – Boost

- Parallel Boost Graph Library
  - Andrew Lumsdaine, Indiana University
  - Generic C++ library for high-performance parallel and distributed graph computation
  - Builds on the Boost Graph Library (BGL)
    - offers similar data structures, algorithms, and syntax
  - Targets very large graphs (millions of nodes)
  - Distributed-memory parallel processing on clusters
Original BGL: Algorithms

- Searches (breadth-first, depth-first, A*)
- Single-source shortest paths (Dijkstra, Bellman-Ford, DAG)
- All-pairs shortest paths (Johnson, Floyd-Warshall)
- Minimum spanning tree (Kruskal, Prim)
- Components (connected, strongly connected, biconnected)
- Maximum cardinality matching
- Max-flow (Edmonds-Karp, push-relabel)
- Sparse matrix ordering (Cuthill-McKee, King, Sloan, minimum degree)
- Layout (Kamada-Kawai, Fruchterman-Reingold, Gursoy-Atun)
- Betweenness centrality
- PageRank
- Isomorphism
- Vertex coloring
- Transitive closure
- Dominator tree
Original BGL Summary

- Original BGL is large, stable, efficient
  - Lots of algorithms, graph types
  - Peer-reviewed code with many users, nightly regression testing, and so on
  - Performance comparable to FORTRAN.

- Who should use the BGL?
  - Programmers comfortable with C++
  - Users with graph sizes from tens of vertices to millions of vertices
Parallel BGL

- A version of C++ BGL for computational clusters
  - Distributed memory for huge graphs
  - Parallel processing for improved performance
- An active research project
- Closely related to the original BGL
  - Parallelizing BGL programs should be “easy”

A simple, directed graph… distributed across 3 processors
Parallel Graph Algorithms

- Breadth-first search
- Eager Dijkstra’s single-source shortest paths
- Crauser et al. single-source shortest paths
- Depth-first search
- Minimum spanning tree (Boruvka, Dehne & Götz)
- Connected components
- Strongly connected components
- Biconnected components
- PageRank
- Graph coloring
- Fruchterman-Reingold layout
- Max-flow (Dinic’s)
Big-Data and Map-Reduce

- Big-data deals with processing large data sets
- Nature of data processing problem makes it amenable to parallelism
  - Looking for features in the data
  - Extracting certain characteristics
  - Analyzing properties with complex data mining algorithms
- Data size makes it opportunistic for partitioning into large # of sub-sets and processing these in parallel
- We need new algorithms, data structures, and programming models to deal with problems
A Simple Big-Data Problem

- Consider a large data collection of text documents
- Suppose we want to find how often a particular word occurs and determine a probability distribution for all word occurrences

Sequential algorithm

<table>
<thead>
<tr>
<th>Data collection</th>
<th>Get next document</th>
<th>Find and count words</th>
<th>Count words and update statistics</th>
<th>Generate probability distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>web 2</td>
<td>weed 1</td>
<td>green 2</td>
<td>sun 1</td>
<td>moon 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>land 1</td>
<td>part 1</td>
</tr>
</tbody>
</table>

Table: word occurrences
Parallelization Approach

- **Map**: partition the data collection into subsets of documents and process each subset in parallel
- **Reduce**: assemble the partial frequency tables to derive final probability distribution

**Parallel algorithm**
Parallelization Approach

- **Map**: partition the data collection into subsets of documents and process each subset in parallel
- **Reduce**: assemble the partial frequency tables to derive final probability distribution

**Parallel algorithm**

- Get next document
- Find and count words
- Count words and update statistics
- Check if more documents
- Generate probability distributions

<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>web</td>
<td>2</td>
</tr>
<tr>
<td>weed</td>
<td>1</td>
</tr>
<tr>
<td>green</td>
<td>2</td>
</tr>
<tr>
<td>sun</td>
<td>1</td>
</tr>
<tr>
<td>moon</td>
<td>1</td>
</tr>
<tr>
<td>land</td>
<td>1</td>
</tr>
<tr>
<td>part</td>
<td>1</td>
</tr>
</tbody>
</table>
Actually, it is not easy to parallel….

**Fundamental issues**
Scheduling, data distribution, synchronization, inter-process communication, robustness, fault tolerance, …

**Architectural issues**
Flynn’s taxonomy (SIMD, MIMD, etc.), network topology, bisection bandwidth, cache coherence, …

**Common problems**
Livelock, deadlock, data starvation, priority inversion, …dining philosophers, sleeping barbers, cigarette smokers, …

**Actually, Programmer’s Nightmare….”
Map-Reduce Parallel Programming

- Become an important distributed parallel programming paradigm for large-scale applications
  - Also applies to shared-memory parallelism
  - Becomes one of the core technologies powering big IT companies, like Google, IBM, Yahoo and Facebook.

- Framework runs on a cluster of machines and automatically partitions jobs into number of small tasks and processes them in parallel

- Can capture in combining Map and Reduce parallel patterns
Map-Reduce Example

MAP: Input data $\rightarrow$ <key, value> pair

Split the data to
Supply multiple processors

Data Collection: split1

Data Collection: split 2

Data Collection: split n
**MapReduce**

MAP: Input data ➔ <key, value> pair  
REDUCE: <key, value> pair ➔ <result>